Faculty Publication: Dr. Jim Andrews

Daniel Wehrung, Elaheh. A. Chamsaz, James H. Andrews, Abraham Joy, and Moses O. Oyewumi, “Engineering Alkoxyphenacyl-Polycarbonate Nanoparticles for Potential Application in Near-Infrared Light-Modulated Drug Delivery via Photon Up-Conversion Process,” Journal of Nanoscience and Nanotechnology 17, 4867-4881 (2017). 

This publication describes the results of experiments primarily done at NEOMED, but also at YSU’s Dept. of Physics & Astronomy, using nano-crystals to convert near infrared light to ultraviolet light. Typically, ultraviolet light is difficult to apply as a form of medical phototherapy due to its harmful effects to other tissues. Using the materials studied in this paper, the primary exposure would instead be to infrared light that is then converted to ultraviolet at the site of the phototherapy for localized treatment. This work was led by Daniel Wehrung as part of his successful PhD dissertation work at NEOMED under the supervision of Dr. Moses Oyewumi in the Department of Pharmaceutical Sciences. Dr. Andrews assisted with experiments at YSU as part of this study.


Photoresponsive delivery systems that are activated by high energy photo-triggers have been accorded much attention because of the capability of achieving reliable photoreactions at short irradiation times. However, the application of a high energy photo-trigger (UV light) is not clinically viable. Meanwhile, the process of photon-upconversion is an effective strategy to generate a high energy photo-trigger in-situ through exposure to clinically relevant near-infrared (NIR) light. In this regard, we synthesized photon upconverting nanocrystals (UCNCs) that were subsequently loaded into photoresponsive nanoparticles (NPs) prepared using alkoxyphenacyl-based polycar- bonate homopolymer (UCNC-APP-NPs). UCNC loading affected resultant NP size, size distribu- tion, colloidal stability but not the zeta potential. The efficiency of NIR-modulated drug delivery was impacted by the heterogenetic nature of the resultant UCNC-APP-NPs which was plausibly formed through a combination of UCNC entrapment within the polymeric NP matrix and nucleation of polymer coating on the surface of the UCNCs. The biocompatibility of UCNC-APP-NPs was demonstrated through cytotoxicity, macrophage activation, and red blood cell lysis assays. Studies in tumor-bearing (nu/nu) athymic mice showed a negligible distribution of UCNC-APP-NPs to retic- uloendothelial tissues. Further, distribution of UCNC-APP-NPs to various tissues was in the order (highest to lowest): Lungs > Tumor > Kidneys > Liver > Spleen > Brain > Blood > Heart. In all, the work highlighted some important factors that may influence the effectiveness, reproducibility biocompatibility of drug delivery systems that operate on the process of photon-upconversion.

Faculty Publication: Robert J. Korenic

Robert J. Korenic, Associate Professor, Civil and Construction Engineering Technology, presented a paper entitled “Youngstown State University ‘Gateway Project’ Rain Garden Design Upgrades.” The paper was presented at the Engineering Sustainability Innovation and the Triple Bottom Line Conference on April 10, 2017 in Pittsburgh, PA. This is a national conference affiliated with the University of Pittsburgh Swanson School of Engineering and the Mascaro Center for Sustainable Innovation.

Robert J. Korenic



The Youngstown State University (YSU) “Gateway Project,” completed several years ago, was a large scale grounds and facilities project intended to upgrade several campus buildings and the grounds surrounding these facilities. Many of the upgrades utilized Leadership in Energy and Environmental Design (LEED) sustainable design criteria. Included in these upgrades was the installation of bioswale and rain garden areas intended to help manage storm water runoff from new parking facilities. While the bioswales are functioning as intended, the rain garden has never maintained plant life and is not functioning to manage storm water runoff. Phase one of this research involved testing the hydraulic conductivity of the soil in the garden, sampling the soil for its pH and identifying the soil stratification in the garden by digging test pits. This document will recap the results of that research and build on those results by specifying how the rain garden can be rebuilt in order to properly manage the storm water runoff.

Faculty Publications: Nguyet Nguyen

Paper Title: “Hidden Markov Model for Portfolio Management with Mortgage-Backed Securities Exchange-Traded Fund” was published on the Society of Actuaries website in April. This project was funded by the finance research grants from SOA, from June 2016-June 2017.



The hidden Markov model (HMM) is a regime-shift model that assumes observation data were driven by hidden regimes (or states). The model has been used in many fields, such as speech recognition, handwriting recognition, biomathematics and financial economics. In this paper, we describe HMM and its application in finance and actuarial areas. We then develop a new application of HMM in mortgage-backed securities exchange-traded funds (MBS ETFs). We begin with a primer on the hidden Markov model, covering main concepts, the model’s algorithms and examples to demonstrate the concepts. Next, we introduce some applications of the model in actuarial and financial areas. We then present applications of HMM on MBS ETFs. Finally, we establish a new use of HMM for a portfolio management with MBS ETFs: predicting prices and trading some MBS ETFs. Data, algorithms and codes generated in this paper can be used for future research in actuarial science and finance.

Paper Title: “Using the Hidden Markov Model to Improve the Hull-White Model for Short Rate”, a collaboration work with Thomas Wakefield, YSU, and Dung Nguyen, Ned Davis Research Group, was accepted to publish in the International Journal of Trade, Economics and Finance.

Recent Publication: Abdullah Kuraan, Stefan Moldovan, Kyosung Choo

Abdullah M. Kuraan, Stefan I. Moldovan, Kyosung Choo, “Heat transfer and hydrodynamics of free water jet impingement at low nozzle-to-plate spacings,” International Journal of Heat and Mass Transfer 108 (2017) 2211-2216.


In this study, heat transfer and hydrodynamics of a free water jet impinging a flat plate surface are experimentally investigated. The effects of the nozzle-to-plate spacing, which is equal to or less than one nozzle diameter (H/d = 0.08–1), on the Nusselt number, hydraulic jump diameter, and pressure at the stagnation point are considered. The results show that the normalized stagnation Nusselt number, pressure, and hydraulic jump diameter are divided into two regions: Region (I) jet deflection region (H/d ⩽ 0.4) and Region (II) inertia dominant region (0.4 < H/d ⩽ 1). In region I, the normalized stagnation Nusselt number and hydraulic jump diameter drastically increase with decreasing the nozzle-to-plate spacing, since the stagnation pressure increases due to the jet deflection effect. In region II, the effect of the nozzle-to-plate spacing is negligible on the normalized stagnation Nusselt number and hydraulic jump diameter since the average velocity of the jet is constant, which means the jet deflection effect disappears. Based on the experimental results, new correlations for the normalized hydraulic jump diameter, stagnation Nusselt number, and pressure are developed as a function of the nozzle-to-plate spacing alone.

Recent Publication: Biology Faculty & Students

STEM faculty members on the paper: Xiangjia “Jack” Min, Feng Yu, Chester Cooper
STEM graduate students:  Brian Powell, Vamshi Amerishetty, John Meinken
STEM undergraduate student: Geneva Knott

Powell B., Amerishetty V., Meinken J., Knott G., Feng Y., Cooper C., and Min X.J., 2016, “ProtSecKB: the protist secretome and subcellular proteome knowledgebase,” Computational Molecular Biolog 6(4): 1-12.


Kingdom Protista contains a large group of eukaryotic organisms with diverse lifestyles. We developed the Protist Secretome and Subcellular Proteome Knowledgebase (ProtSecKB) to host information of curated and predicted subcellular locations of all protist proteins. The protist protein sequences were retrieved from UniProtKB, consisting of 1.97 million entries generated from 7,024 species with 101 species including 127 organisms having complete proteomes. The protein subcellular locations were based on curated information and predictions using a set of well evaluated computational tools.  The database can be searched using several different types of identifiers, gene names or keyword(s). Secretomes and other subcellular proteomes can be searched or downloaded. BLAST searching against the complete set of protist proteins or secretomes is available.  Protein family analysis of secretomes from representing protist species, including Dictyostelium discoideum, Phytophthora infestans, and Trypanosoma cruzi, showed that species with different lifestyles had drastic differences of protein families in their secretomes, which may determine their lifestyles. The database provides an important resource for the protist and biomedical research community. The database is available at http://bioinformatics.ysu.edu/secretomes/protist/index.php.

Recent Publication: Dr. Jai K. Jung

Editors’ Choice – Canadian Geotechnical Journal – December 201

Jai K. Jung, Thomas D. O’Rourke, Christina Argyrou“Multi-directional force–displacement response of underground pipe in sand,” Canadian Geotechnical Journal, 2016, 53(11): 1763-1781.

This paper is part of a Special Issue entitled “Pipeline geotechnics”.


A methodology is presented to evaluate multi-directional force–displacement relationships for soil–pipeline interaction analysis and design. Large-scale tests of soil reaction to pipe lateral and uplift movement in dry and partially saturated sand are used to validate plane strain, finite element (FE) soil, and pipe continuum models. The FE models are then used to characterize force versus displacement performance for lateral, vertical upward, vertical downward, and oblique orientations of pipeline movement in soil. Using the force versus displacement relationships, the analytical results for pipeline response to strike-slip fault rupture are shown to compare favorably with the results of large-scale tests in which strike-slip fault movement was imposed on 250 and 400 mm diameter high-density polyethylene pipelines in partially saturated sand. Analytical results normalized with respect to maximum lateral force are provided on 360° plots to predict maximum pipe loads for any movement direction. The resulting methodology and dimensionless plots are applicable for underground pipelines and conduits at any depth, subjected to relative soil movement in any direction in dry or saturated and partially saturated medium to very dense sands.

Recent Publication: Dr. Kyosung Choo

Brian K. Friedrich, Tamira D. Ford, Aspen W. Glaspell, Kyosung Choo, “Experimental study of the hydrodynamic and heat transfer of air-assistant circular water jet impinging a flat circular disk,” International Journal of Heat and Mass Transfer Volume 106 (March 2017) 804-809.


Hydrodynamic and heat transfer characteristics of the circular hydraulic jump by air-assistant water jet impingement was experimentally investigated using water and air as the test fluid. The effects of volumetric quality (β = 0–0.9) on the hydraulic jump radius, local Nusselt number and, pressure at the stagnation point were considered under fixed water-flow-rate condition. The results showed that the dimensionless hydraulic jump radius increased with volumetric quality, attained a maximum value at around 0.8 of the volumetric quality, and then decreased. The hydraulic jump of two phase impinging jet is governed by the stagnation pressure and the lateral variation of Nusselt number is governed by hydraulic jump radius. Based on the experimental results, a new correlation for the normalized hydraulic jump radius of the impinging jet are developed as a function of the normalized stagnation pressure alone.

Recent Publications: Dr. Lucy Kerns

Dr. KernsLucy Kerns, assistant professor, Mathematics and Statistics, has authored two articles that have been accepted for publication. The first, titled “Construction of Simultaneous Confidence Bands for Multiple Logistic Regression Models over Restricted Regions,” will be published in the journal Statistics: A Journal of Theoretical and Applied Statistics. The second, titled “A Note on Range Regression,” has been accepted for publication by the Journal of Applied Probability & Statistics. The paper provides a new data analysis technique in seeking the linear pattern between two variables.

Construction of Simultaneous Confidence Bands for Multiple Logistic Regression Models over Restricted Regions


This article presents methods for constructing an asymptotic hyperbolic band under the multiple logistic regression model when the predictor variables are restricted to a specific region X. Scheff\'{e}’s method yields unnecessarily wide, and hence conservative, bands if the predictor variables can be restricted to a certain region. Piegorsch and Casella (1988) developed a procedure to build an asymptotic confidence band for the multiple logistic regression model over particular regions. Those regions are shown to be special cases of the region X, which was first investigated by Seppanen and Uusipaikka (1992) in the multiple linear regression context. This article also provides methods for constructing conservative confidence bands when the restricted region is not of the specified form. Particularly, rectangular restricted regions, which are commonly encountered in practice, are considered. Two examples are given to illustrate the proposed methodology, and one example shows that the proposed procedure outperforms the method given by Piegorsch and Casella (1988).