Recent Publication: Dr. Snow Balaz, David Bernand, & Research Group

Title: “Support structure effect on CO oxidation: A comparative study on SiO2 nanospheres and CeO2 nanorods supported CuOx catalysts”

Authors: Shaikh Tofazzel Hossain, Yazeed Almesned, Kefu Zhang, Elizabeth T. Zella, David T.Bernard. Snjezana Balaz, & RuigangWange

Date Published: January 15, 2018



The effect of support reducibility and reduction treatment was studied in SiO2nanospheres and CeO2 nanorods supported CuOx (0 ≤ x ≤ 1) catalysts on CO oxidation. CuO nanoparticles were impregnated on SiO2 nanospheres and CeO2nanorods using thermal decomposition method and then the samples were oxidized in air at different temperatures (400–600 °C). The sample oxidized at 400 °C was also further reduced under hydrogen atmosphere to compare the effect of reduction treatment on the catalytic activity. Detailed XRD, Raman, H2-TPR, and CO oxidation analyses were carried out to understand the effect of CuOx-support interaction and different CuOx species on the catalytic performance. Compared to SiO2 nanospheres supported CuOx catalysts, both CuO/CeO2 and reduced CuOx/CeO2 catalysts exhibited superior catalytic performance in terms of CO conversion and low-temperature hydrogen consumption. The enhanced activity of CeO2 nanorods supported CuOx catalysts was correlated strongly to the surface defects on CeO2nanorods and interfacial structures.