Biomedical Research Series: Dr. Gary Walker

Within the Department of Biological Sciences at Youngstown State University there are many areas of research being explored by faculty and students alike. In a new monthly series, we will highlight faculty research that covers various aspects of biomedical efforts from DNA to bacteria, fungi, and more.

Dr. Gary Walker is a professor and chairperson of Biological Sciences at YSU. He obtained a PhD in Biological Sciences from the Wayne State University of Michigan. He began graduate school with an interest in becoming a developmental biologist with focus on cell division and later in stem cells.

His interest in biomedical research began decades ago but recently changed direction when he collaborated with a local neurologist, Dr. Carl Ansevin. They wrote several papers together and heavily researched muscle proteins. Now he is mainly focusing on the basic molecular programming of muscle tissue with anticipation that he can eventually engineer a functional muscle.

Dr. Walker is currently studying the growth of muscle cell cultures to advance the fundamental understanding of muscle development and function. In addition, he is interested in tissue engineering, specifically 3D-printed structures, which will be used primarily for therapy purposes.

Given his research background, one of his goals is to create functional muscles. To create a 3D-printed tissue structure, Dr. Walker grows myoblasts in cell cultures that are then mixed with a bio gel. The bio gel aides in the suspension of the cells and maintains the 3D structure throughout the printing process. A computerized 3D fluid printer is then used to create a specific geometric structure allowing the “tissues” to transfer to culture vessels so that the myoblasts can grow.

“As you can see, these myofibers form in all sorts of directions,” said Dr. Walker. “So you can’t make a functional muscle because in a functional muscle all these fibers have to be aligned parallel.”

In the end, once the cells are understood and a live tissue is formed, Dr. Walker wants to tinker with the geometry of the tissue, making it more like a standard muscle tissue.

Once the structure is fit for usage in medical procedures, his personal hope for the 3D-printed muscle tissue is to benefit trauma patients and those who experience muscle diseases. This research project has tied together his love of growing cells and researching how functional tissues are formed. The project is also a great way to show the transition between basic and applied knowledge.

There is great potential for this research and Dr. Walker could be an important part of this advancement of biomedical technology.